Abstract

Phylogenetic tree estimation using conventional approaches usually requires pairwise or multiple sequence alignment. However, sequence alignment has difficulties related to scalability and accuracy in case of long sequences such as whole genomes, low sequence identity, and in presence of genomic rearrangements. To address these issues, alignment-free approaches have been proposed. While these methods have demonstrated promising results, many of these lead to errors when regions are missing from the sequences of one or more species that are trivially detected in alignment-based methods. Here, we present an alignment-free method for detecting missing regions in sequences of species for which phylogeny is to be estimated. It is based on counts of k-mers and can be used to filter out k-mers belonging to regions in one species that are missing in one or more of the other species. We perform experiments with real and simulated datasets containing missing regions and find that it can successfully detect a large fraction of such k-mers and can lead to improvements in the estimated phylogenies. Our method can be used in k-mer based alignment-free phylogeny estimation methods to filter out k-mers corresponding to missing regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.