Abstract

Fabrication of nanofibrous scaffolds with well-defined architecture mimicking native extracellular matrix analog has significant potentials for many specific tissue engineering and organs regeneration applications. The fabrication of aligned collagen nanofibrous scaffolds by electrospinning was described in this study. The structure and in vitro properties of these scaffolds were compared with a random collagen scaffold. All the collagen scaffolds were first crosslinked in glutaraldehyde vapor to enhance the biostability and keep the initial nano-scale dimension intact. From in vitro culture of rabbit conjunctiva fibroblast, the aligned scaffold exhibited lower cell adhesion but higher cell proliferation because of the aligned orientation of fibers when compared with the random scaffold. And the alignment of the fibers may control cell orientation and strengthen the interaction between the cell body and the fibers in the longitudinal direction of the fibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call