Abstract
An emerging research area in computational biology and biotechnology is devoted to modelling and prediction of gene-expression patterns. In this article, after a short review of recent achievements we deepen and extend them, especially, by emphasizing and analysing the elegant means of matrix algebra. Based on experimental data, ordinary differential equations with nonlinearities on the right-hand side and a generalized treatment of the absolute shift term, representing the environmental effects, are investigated. Then, the genetic process is studied by a time-discretization, in particular, Runge–Kutta type discretization. By a utilization of the combinatorial algorithm of Brayton and Tong, which is based on the orbits of polyhedra, the possibility of detecting stability and instability regions has been shown. The time-continuous and -discrete systems can be represented by means of matrices allowing biological implications, such as thresholds, and interpretations; which are motivated by our gene-environment networks. A specific contribution of this article consists of a careful but rigorous integration of the environment into modelling and dynamics, and in further new sights. Relations to the parameter estimation within modelling, especially, by using optimization, are indicated, and future research is addressed. †With gratitude dedicated to our dear teacher and friend Prof. Dr Alexander Rubinov who passed away in 2006.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.