Abstract
State-of-the-art memory chips are designed with spare rows and columns for reconfiguration purposes. After a memory chip is reconfigured, physically adjacent cells may no longer have consecutive logical addresses. Test algorithms used at later stages for the detection of physical neighborhood pattern sensitive faults have to consider the fact that the address mapping of the memory chip is no longer available. Furthermore, RAM decoders are designed with a view to minimize the overall silicon area and critical path lengths. This can also result in designs in which physically adjacent rows (and columns) are not logically adjacent. In this paper, we present new test algorithms to detect 5-cell and 9-cell physical neighborhood pattern sensitive faults in dynamic RAMs, even if the logical and physical addresses are different and the physical-to-logical address mapping is not available. These algorithms have test lengths of O(Nr10g3M4) for N-bit RAMs, and also detect other faults such as stuck-at and coupling faults. The algorithms depend on the development of an efficient 3-coloring algorithm that michromatically colors all the triplets among a group off n objects in at most r1og34 coloring steps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.