Abstract

In many geomorphic applications, it is necessary to reduce a polygon to a set of axial lines. For example, consider a fluvial channel network. On the one hand, this network has a polygonal footprint with reaches of finite width organized into a branching network. On the other hand, measuring the length or sinuosity of these reaches, as examples, requires the reduction of their polygonal footprints to axial lines. Here we present a new algorithm that can objectively reduce a polygon to such a set of axial lines, formally called a skeleton. Across four illustrative test cases, we show that this vector-based algorithm has some advantages over three raster-based algorithms in current geomorphic use because it generates smooth, continuous, well-centered skeletons and supports a useful scale-independent metric for the removal of spurious portions. Skeletons in this algorithm are uniquely constructed using a minimum of two parameters: a sampling interval (similar to a resolution) and a numeric pruning criterion (which determines skeleton complexity). We have implemented the algorithm as a freely available, open-source, GIS-ready Python code package without commercial dependency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.