Abstract

This article presents an algorithm that generates a conservative confidence interval of a specified length and coverage probability for the power of a Monte Carlo test (such as a bootstrap or permutation test). It is the first method that achieves this aim for almost any Monte Carlo test. Previous research has focused on obtaining as accurate a result as possible for a fixed computational effort, without providing a guaranteed precision in the above sense. The algorithm we propose does not have a fixed effort and runs until a confidence interval with a user-specified length and coverage probability can be constructed. We show that the expected effort required by the algorithm is finite in most cases of practical interest, including situations where the distribution of the $p$-value is absolutely continuous or discrete with finite support. The algorithm is implemented in the R-package simctest, available on CRAN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.