Abstract
Let M be a matroid on ground set E with rank function r. A subset l⊆E is called a line when r(l)∈{1,2}. Given a finite set L of lines in M, a vector x∈R+L is called a fractional matching when ∑l∈Lxla(F)l⩽r(F) for every flat F of M. Here a(F)l is equal to 0 when l∩F=∅, equal to 2 when l⊆F and equal to 1 otherwise. We refer to ∑l∈Lxl as the size of x.It was shown by Chang et al. [S. Chang, D. Llewellyn, J. Vande Vate, Matching 2-lattice polyhedra: finding a maximum vector, Discrete Math. 237 (2001) 29–61], that a maximum size fractional matching can be found in polynomial time. In this paper we give a polynomial time algorithm to find, for given weight function w:L→Q, a maximum weight fractional matching. A simple reference to the equivalence of separation and optimization does not lead to such an algorithm, since no direct method for polynomial time separation is known for this polytope.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.