Abstract

In this paper we present an algorithm for 3-dimensional orthogonal graph drawing based on the movement of vertices from an initial layout along the main diagonal of a cube. For an n-vertex m-edge graph with maximum degree six, the algorithm produces drawings with bounding box volume at most 2:37n3 and with a total of 7m/3 bends, using no more than 4 bends per edge route. For maximum degree five graphs the bounding box has volume n3 and each edge route has two bends. These results establish new bounds for 3-dimensional orthogonal graph drawing algorithms and improve on some existing bounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.