Abstract

Recently, micro electro-mechanical systems (MEMS) inertial sensors have found their way in various applications. These sensors are fairly low cost and easily available but their measurements are noisy and imprecise, which poses the necessity of calibration. In this paper, we present an approach to calibrate an inertial measurement unit (IMU) comprised of a low-cost tri-axial MEMS accelerometer and a gyroscope. As opposed to existing methods, our method is truly infield as it requires no external equipment and utilizes gravity signal as a stable reference. It only requires the sensor to be placed in approximate orientations, along with the application of simple rotations. This also offers easier and quicker calibration comparatively. We analyzed the method by performing experiments on two different IMUs: an in-house built IMU and a commercially calibrated IMU. We also calibrated the in-house built IMU using an aviation grade rate table for comparison. The results validate the calibration method as a useful low-cost IMU calibration scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.