Abstract

In this paper, we introduce an algorithm and a computer code for numerical differentiation of discrete functions. The algorithm presented is suitable for calculating derivatives of any degree with any arbitrary order of accuracy over all the known function sampling points. The algorithm introduced avoids the labour of preliminary differencing and is in fact more convenient than using the tabulated finite difference formulas, in particular when the derivatives are required with high approximation accuracy. Moreover, the given Matlab computer code can be implemented to solve boundary-value ordinary and partial differential equations with high numerical accuracy. The numerical technique is based on the undetermined coefficient method in conjunction with Taylor’s expansion. To avoid the difficulty of solving a system of linear equations, an explicit closed form equation for the weighting coefficients is derived in terms of the elementary symmetric functions. This is done by using an explicit closed formula for the Vandermonde matrix inverse. Moreover, the code is designed to give a unified approximation order throughout the given domain. A numerical differentiation example is used to investigate the validity and feasibility of the algorithm and the code. It is found that the method and the code work properly for any degree of derivative and any order of accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.