Abstract

This paper presents an approach for the solution of a zero-sum differential game associated with a nonlinear state-feedback H∞ control problem. Instead of using the approximation methods for solving the corresponding Hamilton–Jacobi–Isaacs (HJI) partial differential equation, we propose an algorithm that calculates the explicit inputs to the dynamic system by directly performing minimization with simultaneous maximization of the same objective function. In order to achieve numerical robustness and stability, the proposed algorithm uses: quasi-Newton method, conjugate gradient method, line search method with Wolfe conditions, Adams approximation method for time discretization and complex-step calculation of derivatives. The algorithm is evaluated in computer simulations on examples of first- and second-order nonlinear systems with analytical solutions of H∞ control problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.