Abstract

This paper presents a new algorithm for optimal adaptation of the signal templates of a matched filter bank used in the detection of the motor unit action potential waveforms (abbreviated as MUAP's) in an electromyogram (EMG). It is of interest, for clinical diagnosis and therapy, to detect as many MUAP's as possible in a single measurement, and to determine for each motor unit the repetition. rate of its respective MUAP. For this purpose, we have developed a computer program which, in addition to other subprograms, contains the adaptive filter bank mentioned above. The templates in this fllter bank have to be adapted to nonpredetermined changes in measurement conditions such as the movement of the needle electrode inserted in the muscle. In the present paper, the above templates are estimated by means of a tumbling algorithm, so called because the successive MUAP's from a given motor unit are used as noisy data vectors in a time-varying Kalman filter-predictor framework, which alternately estinates their evolving shapes and identifies the time-varying parameters of the model generating them. The algorithm has been applied with success to synthetic and real EMG data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.