Abstract

Nonnegative Matrix Factorization (NMF) is to decompose a given nonnegative matrix into two nonnegative factor matrices. Recently, randomized NMF has been proposed as an approach to fast NMF of large nonnegative matrices. The main idea of this approach is to perform NMF after reducing the dimensionality of the given nonnegative matrix by multiplying it by a random matrix. Since randomized NMF is formulated as a constrained optimization problem which is slightly different from the one for original NMF, it is necessary to develop suitable algorithms for solving it. However, the conventional algorithm has a serious drawback that the constraints are not satisfied. In addition, the convergence of the algorithm has not been analyzed. In this paper, in order to overcome these drawbacks, we propose to modify the optimization problem and design an algorithm based on the hierarchical alternating least squares method to solve the modified optimization problem. We also prove the global convergence of the designed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.