Abstract
Abstract We present an algorithm to compute a primary decomposition of an ideal in a polynomial ring over the integers. For this purpose we use algorithms for primary decomposition in polynomial rings over the rationals, resp. over finite fields, and the idea of Shimoyama-Yokoyama, resp. Eisenbud-Hunecke-Vasconcelos, to extract primary ideals from pseudo-primary ideals. A parallelized version of the algorithm is implemented in Singular. Examples and timings are given at the end of the article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.