Abstract
In this paper, an algorithm based on a new modification, developed by Duan and Rach, for the Adomian decomposition method (ADM) is generalized to find positive solutions for boundary value problems involving nonlinear fractional ordinary differential equations. In the proposed algorithm the boundary conditions are used to convert the nonlinear fractional differential equations to an equivalent integral equation and then a recursion scheme is used to obtain the analytical solution components without the use of undetermined coefficients. Hence, there is no requirement to solve a nonlinear equation or a system of nonlinear equations of undetermined coefficients at each stage of approximation solution as per in the standard ADM. The fractional derivative is described in the Caputo sense. Numerical examples are provided to demonstrate the feasibility of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Interpolation and Approximation in Scientific Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.