Abstract

Bang-bang control problems have long been of interest to control engineers. Much of the theoretical study of these problems has been limited to linear systems and the results are usually problem-specific. This paper presents a new computational method for solving control problems when it is desired that the control action be bang-bang. A gradient-based algorithm is developed where the switching times are updated to minimize the final state missed distance. The algorithm explains how a change in a switching time propagates through the other switching times and affects the final state. The algorithm is applicable to linear and nonlinear problems, including multi-input systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.