Abstract

An algorithm for generating the representative structures of covalent triazine-based frameworks (CTFs) is proposed, and examined by being applied to the framework synthesized by the trimerization of dicyanobenzene. The algorithm is validated by the comparison between the calculated and experimental results of the structural properties such as surface areas and pore size distributions, which shows acceptable consistency. Moreover, the presented modeling approach can be expected for more extensive use for other CTFs. Thus the simulated atomistic strucutures produced from the modeling method can improve the understanding for amorphous structures of the CTFs which have already been developed, as well as predict the theoretical model of new CTFs, and provide useful design strategies for the future experimental efforts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.