Abstract

Heart rate is an important physiological parameter to assess the cardiac condition of an individual and is traditionally determined by attaching multiple electrodes on the chest of a subject to record the electrical activity of the heart. The installation and handling complexities of such systems does not prove feasible for a user to undergo a long-term monitoring in the home settings. A small-sized, battery-operated wearable monitoring device is placed on the suprasternal notch at neck to record acoustic signals containing information about breathing and cardiac sounds. The heart sounds obtained are heavily corrupted by the respiratory cycles and other external artifacts. This paper presents a novel algorithm for reliably extracting the heart rate from such acoustic recordings, keeping in mind the constraints posed by the wearable technology. The methodology constructs the Hilbert energy envelope of the signal by calculating its instantaneous characteristics to segment and classify a cardiac cycle into S1 and S2 sounds using their timing characteristics. The algorithm is tested on a dataset consisting of 13 subjects with an approximate data length of 75 h and achieves an accuracy of 94.34%, an RMS error of 3.96 bpm and a correlation coefficient of 0.93 with reference to a commercial device in use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.