Abstract

We propose a weighted common subgraph (WCS) matching algorithm to find the most similar subgraphs in two labeled weighted graphs. WCS matching, as a natural generalization of equal-sized graph matching and subgraph matching, has found wide applications in many computer vision and machine learning tasks. In this brief, WCS matching is first formulated as a combinatorial optimization problem over the set of partial permutation matrices. Then, it is approximately solved by a recently proposed combinatorial optimization framework-graduated nonconvexity and concavity procedure. Experimental comparisons on both synthetic graphs and real-world images validate its robustness against noise level, problem size, outlier number, and edge density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.