Abstract

AbstractThis paper presents the translational propagation algorithm, a new method for obtaining optimal or near optimal Latin hypercube designs (LHDs) without using formal optimization. The procedure requires minimal computational effort with results virtually provided in real time. The algorithm exploits patterns of point locations for optimal LHDs based on the ϕp criterion (a variation of the maximum distance criterion). Small building blocks, consisting of one or more points each, are used to recreate these patterns by simple translation in the hyperspace. Monte Carlo simulations were used to evaluate the performance of the new algorithm for different design configurations where both the dimensionality and the point density were studied. The proposed algorithm was also compared against three formal optimization approaches (namely random search, genetic algorithm, and enhanced stochastic evolutionary algorithm). It was found that (i) the distribution of the ϕp values tends to lower values as the dimensionality is increased and (ii) the proposed translational propagation algorithm represents a computationally attractive strategy to obtain near optimum LHDs up to medium dimensions. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.