Abstract

Introduction. Construction of the radar image of a moving target and estimation of its velocity in synthetic aperture radars (SAR) presents a relevant research problem. The low quality of radar imaging is frequently related to the phenomenon of range cell migration (RCM). Conventional methods for RCM compensation, which are successfully used to obtain radar images of stationary targets, fail to provide the required quality when applied to moving targets. At present, a number of algorithms are used to solve this problem. However, the majority of them employ optimization procedures when searching for estimates of unknown parameters, which fact greatly complicates their implementation. An exception is the LvD algorithm, which implements double keystone transform to construct a radar image without using complex estimate search procedures. Radar images are constructed in the coordinates "longitudinal velocity - lateral velocity", which facilitates estimation of the target velocity components.Aim. Development of an alternative algorithm based on the Mellin matched filter (MMF) for estimating the velocity and constructing the radar image of a moving target in a side-looking SAR.Materials and methods. The derived algorithm is based on the invariance of the integral Mellin transform to the signal scale and uses the MMF to estimate the target velocity components.Results. An algorithm for constructing the radar image of a moving target based on the MMF was synthesized. An analysis of the LvD algorithm showed its capacity for selecting the optimum scale factor when implementing a second KT. The conducted computer simulation of the MMF and LvD algorithms showed their equal accuracy. Under the same simulation scenarios, both algorithms yield effective estimates of the velocity components of a moving target when the signal-to-noise ratio is greater than -10 dB.Conclusion. The proposed algorithm for constructing a radar image can be used in SAR systems designed for detection and velocity estimation of a moving target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.