Abstract
Any radiography simulation effort that involves high energy photons should also address charged particle transport problem as well. The scattering cross sections with the charged particles, namely electrons and positrons, go through elastic and inelastic scattering interactions that are highly anisotropic. The conventional Boltzmann operator used in the transport computations can not represent the highly anisotropic scattering interactions. One way is to implement Fokker‐Planck operators. The implementation of Fokker‐Planck operators requires decomposition of scattering kernels into singular and regular components. This paper introduces an algorithm on how to decompose the elastic and inelastic scattering cross sections into singular and regular components and how to compute momentum transfer and stopping power coefficients from singular components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.