Abstract

In this paper we propose a method for computing the roots of a monic matrix polynomial. To this end we compute the eigenvalues of the corresponding block companion matrix C. This is done by implementing the QR algorithm in such a way that it exploits the rank structure of the matrix. Because of this structure, we can represent the matrix in Givens-weight representation. A similar method as in Chandrasekaran et al. (Oper Theory Adv Appl 179:111---143, 2007), the bulge chasing, is used during the QR iteration. For practical usage, matrix C has to be brought in Hessenberg form before the QR iteration starts. During the QR iteration and the transformation to Hessenberg form, the property of the matrix being unitary plus low rank numerically deteriorates. A method to restore this property is used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.