Abstract

In this paper, a new definition of a reduced Padé approximant and an algorithm for its computation are proposed. Our approach is based on the investigation of the kernel structure of the Toeplitz matrix. It is shown that the reduced Padé approximant always has nice properties which the classical Padé approximant possesses only in the normal case. The new algorithm allows us to avoid the appearance of Froissart doublets induced by computer roundoff in the non-normal Padé table.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.