Abstract

Several methods have been proposed to calculate a rigorous error bound of an approximate solution of a linear system by floating-point arithmetic. These methods are called `verification methods'. Applicable range of these methods are different. It depends mainly on the condition number and the dimension of the coefficient matrix whether such methods succeed to work or not. In general, however, the condition number is not known in advance. If the dimension or the condition number is large to some extent, then Oishi---Rump's method, which is known as the fastest verification method for this purpose, may fail. There are more robust verification methods whose computational cost is larger than the Oishi---Rump's one. It is not so efficient to apply such robust methods to well-conditioned problems. The aim of this paper is to choose a suitable verification method whose computational cost is minimum to succeed. First in this paper, four fast verification methods for linear systems are briefly reviewed. Next, a compromise method between Oishi---Rump's and Ogita---Oishi's one is developed. Then, an algorithm which automatically and efficiently chooses an appropriate verification method from five verification methods is proposed. The proposed algorithm does as much work as necessary to calculate error bounds of approximate solutions of linear systems. Finally, numerical results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.