Abstract

PurposeThe purpose of this study was to introduce a new algorithm for automated measurement of the modulation transfer function (MTF) using an edge of a readily available phantom and to evaluate the effect of reconstruction filter and field of view (FOV) on the spatial resolution in the CT images.MethodsOur automated MTF measurement consisted of several steps. The center of the image was established and an appropriate region of interest (ROI) designated. The edge spread function (ESF) was determined, and a suitably interpolated ESF curve was differentiated to obtain the line spread function (LSF). The LSF was Fourier transformed to obtain the MTF. All these steps were accomplished automatically without user intervention. The results of the automated MTF from the edge phantom were validated by comparing them with a point image, and the results of the automated calculation were validated by the standard fitting method. The automated MTF calculation was then applied to the images of two polymethyl methacrylate (PMMA) phantoms and a wire phantom which had been scanned by a Toshiba Alexion 4‐slice CT scanner and reconstructed with various filter types and FOVs.ResultsThe difference in the 50% MTF values obtained from the edge and point phantoms were within ±4%. The values from the automated and fitted methods agreed to within ±2%, indicating that the automated MTF calculation was accurate. The automated MTF calculation was able to differentiate MTF curves for various filters. The spatial resolution values were 0.37 ± 0.00, 0.71 ± 0.01, and 0.78 ± 0.01 cycles/mm for FC13, FC30 and FC52 filters, respectively. The spatial resolution of the images decrease linearly (R 2 > 0.98) with increasing FOVs.ConclusionAn automated MTF method was successfully developed using an edge phantom, the PMMA phantom. The method is easy to implement in a clinical environment and is not influenced by user experience.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.