Abstract

An algorithm based on a delayed constraint generation method for solving semi-infinite programs for constructing minimax optimal designs for nonlinear models is proposed. The outer optimization level of the minimax optimization problem is solved using a semidefinite programming based approach that requires the design space be discretized. A nonlinear programming solver is then used to solve the inner program to determine the combination of the parameters that yields the worst-case value of the design criterion. The proposed algorithm is applied to find minimax optimal designs for the logistic model, the flexible 4-parameter Hill homoscedastic model and the general nth order consecutive reaction model, and shows that it (i) produces designs that compare well with minimax D−optimal designs obtained from semi-infinite programming method in the literature; (ii) can be applied to semidefinite representable optimality criteria, that include the common A−,E−,G−,I− and D-optimality criteria; (iii) can tackle design problems with arbitrary linear constraints on the weights; and (iv) is fast and relatively easy to use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.