Abstract
AbstractIn this paper, a new methodmodified exponential cubic B-Spline differential quadrature method(mExp-DQM) has been developed for space discretization together with a time integration algorithm for numeric study of (2 + 1) dimensional hyperbolic telegraph equations. The mExp-DQM (i.e., differential quadrature method with modified exponential cubic B-splines as new basis) reduces the problem into an amenable system of ordinary differential equations (ODEs), in time. The time integration SSP-RK54 algorithm has been adopted to solve the resulting system of ODEs. The proposed method is shown stable by computing the eigenvalues of the coefficients matrices while the accuracy of the method is illustrated in terms ofL2andL∞error norms for each problem. A comparison of mExp-DQM solutions with the results of the other numerical methods has been carried out for various space sizes and time step sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.