Abstract
Assume that a pair of general Linear Random-effects Models (LRMs) are given with a correlated covariance matrix for their error terms. This paper presents an algebraic approach to the statistical analysis and inference of the two correlated LRMs using some state-of-the-art formulas in linear algebra and matrix theory. It is shown first that the best linear unbiased predictors (BLUPs) of all unknown parameters under LRMs can be determined by certain linear matrix equations, and thus the BLUPs under the two LRMs can be obtained in exact algebraic expressions. We also discuss algebraical and statistical properties of the BLUPs, as well as some additive decompositions of the BLUPs. In particular, we present necessary and sufficient conditions for the separated and simultaneous BLUPs to be equivalent. The whole work provides direct access to a very simple algebraic treatment of predictors/estimators under two LRMs with correlated covariance matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.