Abstract

The paper studies an iterative method for algebraic problems arising in numerical simulation of blood flows. Here we focus on a numerical solver for the fluid part of otherwise coupled fluid-structure system of equations which models the hemodynamics in vessels. Application of the finite element method and semi-implicit time discretization leads to the discrete Oseen problem at every time step of the simulation. The problem challenges numerical methods by anisotropic geometry, open boundary conditions, small time steps and transient flow regimes. We review known theoretical results and study the performance of recently proposed preconditioners based on two-parameter threshold ILU factorization of non-symmetric saddle point problems. The preconditioner is applied to the linearized Navier–Stokes equations discretized by the stabilized Petrov–Galerkin finite element (FE) method. Careful consideration is given to the dependence of the solver on the stabilization parameters of the FE method. We model the blood flow in the digitally reconstructed right coronary artery under realistic physiological regimes. The paper discusses what is special in such flows for the iterative algebraic solvers, and shows how the two-parameter ILU preconditioner is able to meet these specifics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.