Abstract

The problem of giving a spectral factorization of a class of matrices arising in Wiener filtering theory and network synthesis is tackled via an algebraic procedure. A quadratic matrix equation involving only constant matrices is shown to possess solutions which directly define a solution to the spectral factorization problem. A spectral factor with a stable inverse is defined by that unique solution to the quadratic equation which also satisfies a certain eigenvalue inequality. Solution of the quadratic matrix equation and incorporation of the eigenvalue inequality constraint are made possible through determination of a transformation which reduces to Jordan form a matrix formed from the coefficient matrices of the quadratic equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.