Abstract
Equipping a non-equivariant topological text {E}_infty -operad with the trivial G-action gives an operad in G-spaces. For a G-spectrum, being an algebra over this operad does not provide any multiplicative norm maps on homotopy groups. Algebras over this operad are called naïve-commutative ring G-spectra. In this paper we take G=SO(2) and we show that commutative algebras in the algebraic model for rational SO(2)-spectra model rational naïve-commutative ring SO(2)-spectra. In particular, this applies to show that the SO(2)-equivariant cohomology associated to an elliptic curve C of Greenlees (Topology 44(6):1213–1279, 2005) is represented by an text {E}_infty -ring spectrum. Moreover, the category of modules over that text {E}_infty -ring spectrum is equivalent to the derived category of sheaves over the elliptic curve C with the Zariski torsion point topology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.