Abstract

Let H be an infinite dimensional complex Hilbert space. Denote by B(H) the algebra of all bounded linear operators on H, and by I(H) the set of all idempotents in B(H). Suppose that Φ is a surjective map from B(H) onto itself. If for every λ ∈ -1,1,2,3, and A, B ∈ B(H),A-λB ∈I(H) ⇔ Φ(A) -λΦ(B) ∈I(H, then Φ is a Jordan ring automorphism, i.e. there exists a continuous invertible linear or conjugate linear operator T on H such that Φ(A) = TAT-1 for all A ∈ B(H), or Φ(A) = TA*T-1 for all A ∈ B(H); if, in addition, A-iB ∈I(H)⇔ Φ(A)-iΦ(B) ∈I(H), here i is the imaginary unit, then Φ is either an automorphism or an anti-automorphism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call