Abstract

The first Jacobi–Trudi identity expresses Schur polynomials as determinants of matrices, the entries of which are complete homogeneous polynomials. The Schur polynomials were defined by Cauchy in 1815 as the quotients of determinants constructed from certain partitions. The Schur polynomials have become very important because of their close relationship with the irreducible characters of the symmetric groups and the general linear groups, as well as due to their numerous applications in combinatorics. The Jacobi–Trudi identity was first formulated by Jacobi in 1841 and proved by Nicola Trudi in 1864. Since then, this identity and its numerous generalizations have been the focus of much attention due to the important role which they play in various areas of mathematics, including mathematical physics, representation theory, and algebraic geometry. Various proofs of the Jacobi–Trudi identity, which are based on different ideas (in particular, a natural combinatorial proof using Young tableaux), have been found. The paper contains a short simple proof of the first Jacobi–Trudi identity and discusses its relationship with other well-known polynomial identities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.