Abstract

This work is devoted to the proposal of a new flux limiter that makes the algebraic flux correction finite element scheme linearity and positivity preserving on general simplicial meshes. Minimal assumptions on the limiter are given in order to guarantee the validity of the discrete maximum principle, and then a precise definition of it is proposed and analyzed. Numerical results for convection–diffusion problems confirm the theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.