Abstract
We propose a new estimator of high-dimensional spectral density matrices, called ALgebraic Spectral Estimator (ALSE), under the assumption of an underlying low rank plus sparse structure, as typically assumed in dynamic factor models. The ALSE is computed by minimizing a quadratic loss under a nuclear norm plus l 1 norm constraint to control the latent rank and the residual sparsity pattern. The loss function requires as input the classical smoothed periodogram estimator and two threshold parameters, the choice of which is thoroughly discussed. We prove consistency of ALSE as both the dimension p and the sample size T diverge to infinity, as well as the recovery of latent rank and residual sparsity pattern with probability one. We then propose the UNshrunk ALgebraic Spectral Estimator (UNALSE), which is designed to minimize the Frobenius loss with respect to the pre-estimator while retaining the optimality of the ALSE. When applying UNALSE to a standard U.S. quarterly macroeconomic dataset, we find evidence of two main sources of comovements: a real factor driving the economy at business cycle frequencies, and a nominal factor driving the higher frequency dynamics. The article is also complemented by an extensive simulation exercise. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.