Abstract

We consider Stochastic Automata Networks (SANs) in continuous time and we prove a sufficient condition for the steady-state distribution to have product form. We consider synchronization-free SANs in which the transitions of one automaton may depend upon the states of the other automata. This model can represent efficiently multidimensional Markov chains whose transitions are limited to one component but whose rates may depend on the state of the chain. The sufficient condition we obtain is quite simple and our theorem generalizes former results on SANs as well as results on modulated Markovian queues, such as Boucherie’s theory on competing Markov chain, on reversible queues considered by Kelly and on modulated Jackson queueing networks studied by Zhu. The sufficient condition and the proof are purely algebraic and are based on the intersection of kernels for a certain set of matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.