Abstract

Classical mechanics is presented here in a unary operator form, constructed using the binary multiplication and Poisson bracket operations that are given in a phase space formalism, then a Gibbs equilibrium state over this unary operator algebra is introduced, which allows the construction of a Hilbert space as a representation space of a Heisenberg algebra, giving a noncommutative operator algebraic variant of the Koopman–von Neumann approach. In this form, the measurement theory for unary classical mechanics can be the same and inform that for quantum mechanics, expanding classical mechanics to include noncommutative operators so that it is close to quantum mechanics, instead of attempting to squeeze quantum mechanics into a classical mechanics mold. The measurement problem as it appears in unary classical mechanics suggests a classical signal analysis approach that can also be successfully applied to the measurement problem of quantum mechanics. The development offers elementary mathematics that allows a formal reconciliation of “collapse” and “no-collapse” interpretations of quantum mechanics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call