Abstract

This work investigates the design of compilers for procedural languages, based on the algebraic laws which these languages satisfy. The particular strategy adopted is to reduce an arbitrary source program to a general form, capable of representing an arbitrary target machine. This is acheived by a series of normal form reduction theorems which are proved algebraically from the more basic laws. The normal form and the related reduction theorems can then be instantiated to design compilers for distinct target machines. This constitutes the main novelty of the author's approach to compilation, together with the fact that the entire process is formalized within a single and uniform semantic framework of a procedural language and its algebraic laws. Furthermore, by mechanizing the approach using the OBJ3 term rewriting system it is shown that a prototype compiler is developed as a byproduct of its own proof of correctness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.