Abstract

Considering the problem that intrusion detection systems always produced duplicated alarm information, in this paper we propose an iterative self-organization clustering algorithm. It begins with calculating average value of classes as the new clustering center on the basis of random selection, merging and dividing dynamically, then finish the clustering procedure through the iteration finally. Experimental results with DARPA1999 testing data set show that the clustering method is more excellent than traditional clustering methods in both aggregation rate and error aggregation rate. Besides, it reduces duplicated alarm effectively and provides assistance to further related work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.