Abstract
Abstract In the present paper, an ALE particle method is presented for the numerical simulation of incompressible viscous flows. The present approach interpolates physical quantities, e.g., velocity and temperature, using an upwind scheme at an arbitrary new position. In the present approach, the incompressible Navier–Stokes equations are first solved in a Lagrangian step by a least squares moving particle semi-implicit (LSMPS) method. A redistribution of particle positions is then performed in order to deal with the distorted distribution of particles due to the Lagrangian movement. Finally, the particle velocity is interpolated at the particles’ new position, which is computed by two redistribution models. Taylor–Green vortices, lid-driven flows in a cavity and buoyancy-driven flows in a cavity for several Reynolds and Rayleigh numbers are computed as numerical examples. The results are compared with those of similar approaches proposed previously, such as non-upwind interpolation and the meshless advection using a flow-directional local-grid (MAFL) method. The method presented herein exhibits advantages such as higher accuracy and enhanced numerical stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.