Abstract

Ethanol alters BK (slo1) channel function leading to perturbation of physiology and behavior. Site(s) and mechanism(s) of ethanol-BK channel interaction are unknown. We demonstrate that ethanol docks onto a water-accessible site that is strategically positioned between the slo1 calcium-sensors and gate. Ethanol only accesses this site in presence of calcium, the BK channel's physiological agonist. Within the site, ethanol hydrogen-bonds with K361. Moreover, substitutions that hamper hydrogen bond formation or prevent ethanol from accessing K361 abolish alcohol action without altering basal channel function. Alcohol interacting site dimensions are approximately 10.7 × 8.6 × 7.1 Å, accommodating effective (ethanol-heptanol) but not ineffective (octanol, nonanol) channel activators. This study presents: (i) to our knowledge, the first identification and characterization of an n-alkanol recognition site in a member of the voltage-gated TM6 channel superfamily; (ii) structural insights on ethanol allosteric interactions with ligand-gated ion channels; and (iii) a first step for designing agents that antagonize BK channel-mediated alcohol actions without perturbing basal channel function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.