Abstract

In order to reduce the false alarm rate and missed detection rate of a Loose Parts Monitoring System (LPMS) for Nuclear Power Plants, a new hybrid method combining Linear Predictive Coding (LPC) and Support Vector Machine (SVM) together to discriminate the loose part signal is proposed. The alarm process is divided into two stages. The first stage is to detect the weak burst signal for reducing the missed detection rate. Signal is whitened to improve the SNR, and then the weak burst signal can be detected by checking the short-term Root Mean Square (RMS) of the whitened signal. The second stage is to identify the detected burst signal for reducing the false alarm rate. Taking the signal's LPC coefficients as its characteristics, SVM is then utilized to determine whether the signal is generated by the impact of a loose part. The experiment shows that whitening the signal in the first stage can detect a loose part burst signal even at very low SNR and thusly can significantly reduce the rate of missed detection. In the second alarm stage, the loose parts' burst signal can be distinguished from pulse disturbance by using SVM. Even when the SNR is �15 dB, the system can still achieve a 100% recognition rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.