Abstract

Carbenes, once considered laboratory curiosities, now serve as powerful tools in the chemical and material sciences. To date, all stable singlet carbenes are single-site ambiphiles. Here we describe the synthesis of a carbene which is a carbon-based dual ambiphile (both single-site and dual-site). The key is to employ imino substituents derived from a cyclic (alkyl)(amino)carbene (CAAC), which imparts a 1,3-dipolar character to the carbene. Its dual ambiphilic nature is consistent with the ability to activate simple organic molecules in both 1,1- and 1,3-fashion. Furthermore, its 1,3-ambiphilicity facilitates an unprecedented reversible intramolecular dearomative [3 + 2] cycloaddition with a proximal arene substituent, giving the carbene the ability to "mask" itself as an air-stable cycloadduct. We perceive that the concept of dual ambiphilicity opens a new dimension for future carbene chemistry, expanding the repertoire of applications beyond that known for classical single-site ambiphilic carbenes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call