Abstract

Air layer supported bearing pads, or “air bearings” as they are commonly called, are popular because of their high load capacity and low in-plane coefficient of friction, making them well suited for supporting moving, high accuracy manufacturing stages. Air/vacuum bearings enhance these capabilities by giving the bearing pad load resistance capacity in both the upward and downward directions. Consequently, it is desirable to know how to model the air layer between the bearing pad and the bearing surface. In this paper, a simple finite element modeling approach is presented for investigating the vibrational characteristics of an air layer supported bearing. It was found that by modeling the air layer as a bed of uniform springs who’s stiffness is determined by load-displacement tests of the bearing, a reasonable representation of the response can be obtained. For a bearing supported by air without vacuum, the dynamic response was very similar to that of a freely supported bearing. The addition of vacuum to an air bearing was found to significantly lower its fundamental frequency which could lead to unwanted resonance problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.