Abstract

Using COMSOL multiphysics software and a previously validated 3D numerical model, performances of a novel air-breathing microfluidic fuel cell (MFFC) are discussed. The microfluidic fuel cell employs a simple structure composed of a flow channel with sloped upper wall, a gas diffusion cathode and a finny anode. Furthermore it can reduce the losses related to mixing in fuel-electrolyte interface and also promote the replenishment of the depletion layer on anode surfaces. Thus, high fuel utilization can be achieved. Numerical simulations show that the fuel utilization can be up to 70%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call