Abstract

Let \(\Gamma \) denote a bipartite distance-regular graph with vertex set X, diameter \(D \ge 4\), and valency \(k \ge 3\). Let \({{\mathbb {C}}}^X\) denote the vector space over \({{\mathbb {C}}}\) consisting of column vectors with entries in \({{\mathbb {C}}}\) and rows indexed by X. For \(z \in X\), let \({{\widehat{z}}}\) denote the vector in \({{\mathbb {C}}}^X\) with a 1 in the z-coordinate, and 0 in all other coordinates. Fix a vertex x of \(\Gamma \) and let \(T = T(x)\) denote the corresponding Terwilliger algebra. Assume that up to isomorphism there exist exactly two irreducible T-modules with endpoint 2, and they both are thin. Fix \(y \in X\) such that \(\partial (x,y)=2\), where \(\partial \) denotes path-length distance. For \(0 \le i,j \le D\) define \(w_{ij}=\sum {{\widehat{z}}}\), where the sum is over all \(z \in X\) such that \(\partial (x,z)=i\) and \(\partial (y,z)=j\). We define \(W=\mathrm{span}\{w_{ij} \mid 0 \le i,j \le D\}\). In this paper we consider the space \(MW=\mathrm{span}\{mw \mid m \in M, w \in W\}\), where M is the Bose–Mesner algebra of \(\Gamma \). We observe that MW is the minimal A-invariant subspace of \({{\mathbb {C}}}^X\) which contains W, where A is the adjacency matrix of \(\Gamma \). We show that \(4D-6 \le \mathrm{dim}(MW) \le 4D-2\). We display a basis for MW for each of these five cases, and we give the action of A on these bases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.