Abstract

AbstractAggregation induced emission (AIE) photosensitizers have attracted great attention due to their good performance in photodynamic therapy (PDT). However, the therapeutic effect of AIE photosensitizer is often highly dependent on the biological microenvironment because it is difficult to produce type I and type II reactive oxygen species (ROS) simultaneously. Herein, an electron‐rich anion‐π+ AIEgen Pys‐QM‐TT is reported, which is capable of highly generating type I and type II ROS and realizing near‐infrared fluorescence imaging synchronously. In the rational design of AIE photosensitizer, the strong electron‐donating triphenylamine unit, π‐bridge thiophene and electron‐withdrawing pyridinium salt unit can enhance the D–π–A behavior, thereby improving the intramolecular charge transfer effect and extending the wavelength. Meanwhile, the powerful D–π–A effect is supposed to reduce ∆ES‐T and promote the intersystem crossing processes, thus increasing the generation of ROS. In addition, the negatively charged anion in pyridinium salt group provides an electron‐rich environment for the excited photosensitizer, so as to promote electron transfer to generate type I ROS. Therefore, Pys‐QM‐TT can not only generate type I and type II ROS simultaneously with weak environmental dependence, but also effectively inhibit bacterial infections and ablate tumor tissue by promoting tumor cell apoptosis, inhibiting tumor cell proliferation and anti‐angiogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.