Abstract

Organelle-targeted photodynamic therapy has been increasingly investigated in recent decades, but little attention has been paid to the damage caused to other non-primary target organelles during the course of action, even though these non-primary target organelles may play a substantial role in inhibiting the growth of cancer cells. In this contribution, we report an AIE-type strong endoplasmic reticulum-targeted luminogen (MTOQS) with a distorted structure, which is efficient in producing ROS both in cellular and non-cellular environment, causing an effective reduction of high levels of GSH and MDA in cancer cells through the efficient accumulation of intracellular ROS, and the levels of ATP, l-lactic acid, anti-apoptotic factor Bcl-2 and apoptotic protein caspase-3 were determined. Through the identification of these markers, it was evidenced that MTOQS-induced dual organelle oxidative stress could diminish the degree of oxidative phosphorylation and glycolysis in cancer cells and trigger an alteration in the culture environment of cancer cells, while causing damage to the endoplasmic reticulum and mitochondria through multiorganelle oxidative stress, turning on the pathway of apoptosis and consequently driving cancer cells to apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call