Abstract
An Artificial Neural Network (ANN) model is developed to accurately predict the instantaneous cutting forces in flat end milling. A unique frequency domain approach is presented and is seen to simulate instantaneous cutting forces reasonably well. A set of eight input variables is chosen to represent the machining conditions and frequency domain parameters of the cutting force signal are generated. Three input parameters are varied, namely Feed, Speed and Depth of Cut. Four output parameters are suggested as a sufficient set to adequately reproduce the instantaneous cutting forces. Exhaustive experimentation is conducted to collect data (consisting of Fx, Fy, and Fz) to train and validate the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.